Birzeit University
Faculty of Science-Department of Physics
Quantum Mechanics I, Phys433
Fall 2020
HW5

1. Solve 3D-Harmonic oscillator once in cartesian coordinates and once in spherical coordinates. Compare your answers
2. Show that for orbital angular momentum \hat{L}

$$
\Delta \hat{L_{x}} \Delta \hat{L_{y}}=\hbar^{2}\left[L(L+1)-m_{L}^{2}\right]
$$

3. Consider an electron in the Hydrogen-atom. The wavefunction of the electron is, at time $t=0$, written as:

$$
\Psi(r, t=0)=A\left(\psi_{211}+2 \psi_{300}+\psi_{421}\right)
$$

(a) Find the normalization constant A
(b) Write the wavefunction at any later time t
(c) What is the expectation value of L_{z}
(d) What is the expectation value of L^{2}
(e) What is the expectation value of H
4. Calculate $\langle z \hat{H} z>$, in the ground state of hydrogen. Hint:If your solution take more than 10 lines then re-think the problem

